147 research outputs found

    Speed-scaling with no Preemptions

    Full text link
    We revisit the non-preemptive speed-scaling problem, in which a set of jobs have to be executed on a single or a set of parallel speed-scalable processor(s) between their release dates and deadlines so that the energy consumption to be minimized. We adopt the speed-scaling mechanism first introduced in [Yao et al., FOCS 1995] according to which the power dissipated is a convex function of the processor's speed. Intuitively, the higher is the speed of a processor, the higher is the energy consumption. For the single-processor case, we improve the best known approximation algorithm by providing a (1+ϵ)αB~α(1+\epsilon)^{\alpha}\tilde{B}_{\alpha}-approximation algorithm, where B~α\tilde{B}_{\alpha} is a generalization of the Bell number. For the multiprocessor case, we present an approximation algorithm of ratio B~α((1+ϵ)(1+wmaxwmin))α\tilde{B}_{\alpha}((1+\epsilon)(1+\frac{w_{\max}}{w_{\min}}))^{\alpha} improving the best known result by a factor of (52)α1(wmaxwmin)α(\frac{5}{2})^{\alpha-1}(\frac{w_{\max}}{w_{\min}})^{\alpha}. Notice that our result holds for the fully heterogeneous environment while the previous known result holds only in the more restricted case of parallel processors with identical power functions

    Energy Efficient Scheduling and Routing via Randomized Rounding

    Get PDF
    We propose a unifying framework based on configuration linear programs and randomized rounding, for different energy optimization problems in the dynamic speed-scaling setting. We apply our framework to various scheduling and routing problems in heterogeneous computing and networking environments. We first consider the energy minimization problem of scheduling a set of jobs on a set of parallel speed scalable processors in a fully heterogeneous setting. For both the preemptive-non-migratory and the preemptive-migratory variants, our approach allows us to obtain solutions of almost the same quality as for the homogeneous environment. By exploiting the result for the preemptive-non-migratory variant, we are able to improve the best known approximation ratio for the single processor non-preemptive problem. Furthermore, we show that our approach allows to obtain a constant-factor approximation algorithm for the power-aware preemptive job shop scheduling problem. Finally, we consider the min-power routing problem where we are given a network modeled by an undirected graph and a set of uniform demands that have to be routed on integral routes from their sources to their destinations so that the energy consumption is minimized. We improve the best known approximation ratio for this problem.Comment: 27 page

    From Preemptive to Non-preemptive Scheduling Using Rejections

    No full text
    International audienceWe study the classical problem of scheduling a set of independent jobs with release dates on a single machine. There exists a huge literature on the preemptive version of the problem, where the jobs can be interrupted at any moment. However, we focus here on the non-preemptive case, which is harder, but more relevant in practice. For instance, the jobs submitted to actual high performance platforms cannot be interrupted or migrated once they start their execution (due to prohibitive management overhead). We target on the minimization of the total stretch objective, defined as the ratio of the total time a job stays in the system (waiting time plus execution time), normalized by its processing time. Stretch captures the quality of service of a job and the minimum total stretch reflects the fairness between the jobs. So far, there have been only few studies about this problem, especially for the non-preemptive case. Our approach is based to the usage of the classical and efficient for the preemptive case shortest remaining processing time (SRPT) policy as a lower bound. We investigate the (offline) transformation of the SRPT schedule to a non-preemptive schedule subject to a recently introduced resource augmentation model, namely the rejection model according to which we are allowed to reject a small fraction of jobs. Specifically, we propose a 2 ǫ-approximation algorithm for the total stretch minimization problem if we allow to reject an ǫ-fraction of the jobs, for any ǫ > 0. This result shows that the rejection model is more powerful than the other resource augmentations models studied in the literature, like speed augmentation or machine augmentation, for which non-polynomial or non-scalable results are known. As a byproduct, we present a O(1)-approximation algorithm for the total flow-time minimization problem which also rejects at most an \epsilon-fraction of jobs

    Energy Efficient Scheduling of MapReduce Jobs

    Full text link
    MapReduce is emerged as a prominent programming model for data-intensive computation. In this work, we study power-aware MapReduce scheduling in the speed scaling setting first introduced by Yao et al. [FOCS 1995]. We focus on the minimization of the total weighted completion time of a set of MapReduce jobs under a given budget of energy. Using a linear programming relaxation of our problem, we derive a polynomial time constant-factor approximation algorithm. We also propose a convex programming formulation that we combine with standard list scheduling policies, and we evaluate their performance using simulations.Comment: 22 page

    A deep Q-learning portfolio management framework for the cryptocurrency market

    Get PDF
    AbstractDeep reinforcement learning is gaining popularity in many different fields. An interesting sector is related to the definition of dynamic decision-making systems. A possible example is dynamic portfolio optimization, where an agent has to continuously reallocate an amount of fund into a number of different financial assets with the final goal of maximizing return and minimizing risk. In this work, a novel deep Q-learning portfolio management framework is proposed. The framework is composed by two elements: a set of local agents that learn assets behaviours and a global agent that describes the global reward function. The framework is tested on a crypto portfolio composed by four cryptocurrencies. Based on our results, the deep reinforcement portfolio management framework has proven to be a promising approach for dynamic portfolio optimization

    Bounded Max-Colorings of Graphs

    Full text link
    In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most bb and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes' weights. In this paper we present complexity results and approximation algorithms for those problems on general graphs, bipartite graphs and trees. We first show that both problems are polynomial for trees, when the number of colors is fixed, and HbH_b approximable for general graphs, when the bound bb is fixed. For the bounded max-vertex-coloring problem, we show a 17/11-approximation algorithm for bipartite graphs, a PTAS for trees as well as for bipartite graphs when bb is fixed. For unit weights, we show that the known 4/3 lower bound for bipartite graphs is tight by providing a simple 4/3 approximation algorithm. For the bounded max-edge-coloring problem, we prove approximation factors of 32/2b3-2/\sqrt{2b}, for general graphs, min{e,32/b}\min\{e, 3-2/\sqrt{b}\}, for bipartite graphs, and 2, for trees. Furthermore, we show that this problem is NP-complete even for trees. This is the first complexity result for max-coloring problems on trees.Comment: 13 pages, 5 figure
    corecore